
Geol. Mag. 154 (3), 2017, pp. 419–440. c Cambridge University Press 2016 .10.1011/ 0016156816000042

(Received 18 2015, accepted 8 a a 2016, first published online 18 2016)

e . a e a e, - e, acce ce, e a a e c e (), a e a e.

1. I c

 e, a e e e e e e

 c a a e e e e e

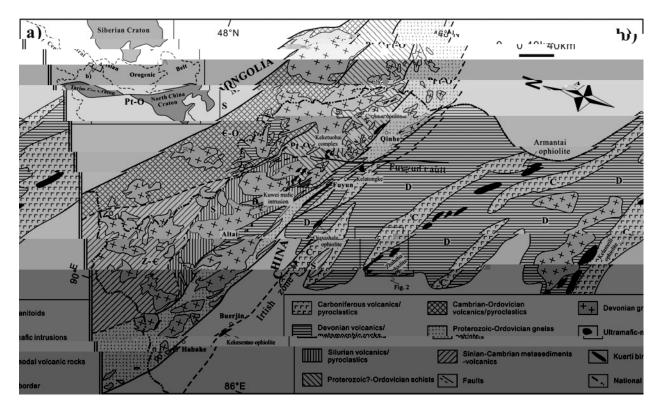
 c a e a e e e e e

 c a e a e e e e e

 (e a e e e e e e e

 a e e e e e e e e

 a e e e e e e e

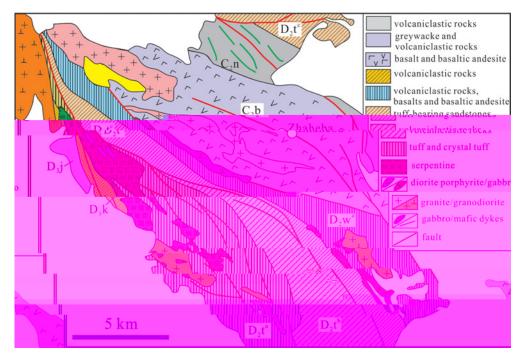

 a e e e e e e e

 a e e e e e e e

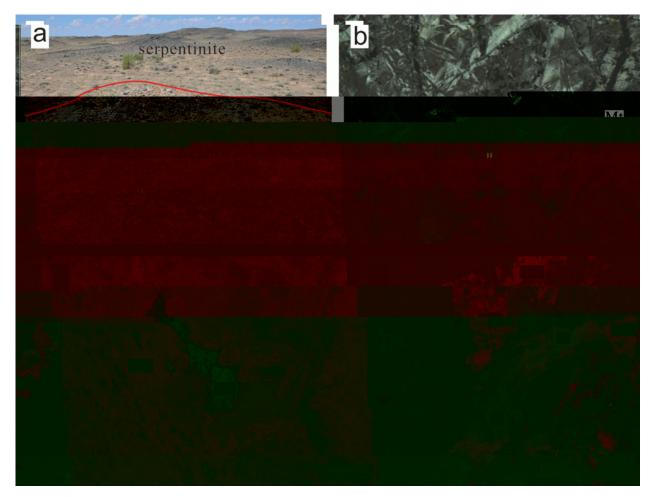
 a e e e e e e e

 a e e e e e e e e e e e e

a e ec e e a e e e e e a a e c e (), e a e a e c acce a e e (,e ö, a a & a, 1 3, a , & e, 2000, e *et al.* 2002, a *et al.* 2004, 200 a) (.1a). e a e e e e a e e a e c, ca e ev e (a *et al.* 200 a,b, e , e & a , 2012). ea e a, c e e a ec e , eve a e ave ee e ve e a e ea , c , , e e a e, a e a a a, a a a a a e e (a , 1 3, a *et al.* 2003, a *et al.* 2003, a *et al.* 200 a) (.1). a e ave ee ca e e e e, e ea e ca ca , ec , e ce


el. (a) ceace ca a ee a a ec e (), () ee a ee ca a e ee ea e a a a e e e ea e a a a e e e (e a e a *et al.* 200).

a ec c c a ce e a e . c , e e e a e e e va , e a , a e a e c e e a e a e a e e (1) e e e a e a e a e a e e c a ce v a e e e c a ce v e e e c a ce


2. Ra, baa a

ec e e e e e -e a e a a a e e a e e a e aea e e ec с е, e e e a ec (1, 2). e a c c e e e e, c a e, a a c a e c ava a a ca a e. ecaeceaa eac a,accaacee ve evea e e e e e ae ee. e ac e e e e e c e aa ee e ve (.3a). e e va e -e a ea $\frac{15}{2}$ e a ea 15 c a e c a e e e ec e e a c-a e e e e e eva aa ca e c e e a e e ce (.2, ee ec). cca a a a e 1 5 e a e a l ca e ee e e e e. v e e a a e e e ca e eee e. eee -

ec e > 0% e e e, a e a e a e (.3, c). a e e e e a cca e e e e e e e a e - c a cae(40 10%) a c ee(30 50%) a e a e e (5 10%) a cca a v e (.3). cce e a c e e e a c e e c a e a a ve cea ae e ae cae ae ca e a e a a-ea , ee ce e c a a caea e e a e e ev--ec. e a a c a e c v c a c e e a e a e e ce a ca v e e e e eva a e e a ()a e aa a () a e e ev a a () (a *et al.* 2006). e a ea ea e ev a e e ce a e a e v ca c a c e e a a a a c ac e ev a aa. e a v e ee e e acc e c a c a , c c e a c a , v ca c a c c a - ea a e (.2). e e e e, a a ca a e e c a ve aa c a e c ava a e ve, a e ca ca ea e a ea . aacae c ava e a ee ec e a a e e e

e2. (e) e ca a e a e a e a e c e (e a e *et al.* 2007, 200 *a* a a , 1 3).

e 3. (e. (a) e) e а а c с с а e e e e e aea e > 0% e ee a e e e e с e . (, c) e e e e c e a a e e а e e. а e.() e a а с e a cae, c e e a c e e, a e e, e e, a cae, е, e e e.

a a e v ca c e e a aaae e ve ae c e e e.

3. A a ca c

3.a. Z c U Pb a a H O a a

c ee e a a e a a a e $(2013 \quad 01, \ 46^{\circ} \ 32 \ 51 \quad , \ 8 \ ^{\circ} \ 2 \ 4 \quad)$ a a a e (2013 02, 46° 33 2 , 8 ° 2 36) c ece e ae e e e e e . c e a a a ca e c ve a a e c a e e c e c a e e e a - c e e a c a c c e. c a a c eeece a a ee e e , c ee e e ec ec a aa . c ee c ee a ea eece c a a e a ca e ce ce () a e evea e e a c e. c a e a e c eeaae eaeaa cvec e a a a ec e (- -) e a e a e e e a e a e ce, e e e ca ve. e e a e a a ca ce e ave e e c e e e et al. (2011). e eeaa e e a e a e e a a e a a e c a e e - e - a a a (*et al.* 2010) a (,2003). e e e e a - a a a (*et al*. ae ae e a e 5% c e ce eve. c a e a a a e c a e e e eea aea aela e e e a a e a a e 2, e ec ve , ava -a e a .// a .ca e. / e .

3.b. M a a a

ea c ee ee e e e - ec a a a e 8800 e ecc e e e ve avee ec ee a e a e c e c e -, e e ca e c e c e c e a c e e 15 e acceea v a e a 15 ea c e 20 c e. e e e a ve e a ca a a a e e e e e a a e a a e 4 a 5 ava a e a .// a .ca e. / e .

3.c. W - c a a

e- c a - a ace-e e c e e a a e a e a e a e e e e c e -, e e ca e c e c e a e e e e a a ca ce e e c e et al. (2004). a ca ec e e a e e a 2%. ace e e e e e a e e a 2%. ace e e e e e a e e a e c e 6000 - ce e e c e et al. (2004). 50 a e e e ca a e e e ve - e e e a a a c a e e e a a a c a e e ve - e e e a a a c a e e e e a a a -1, -2 a -2, a e e e a a a a -1 a -3, e e e ca a e e e c e a e e e a e a a a c a e e e e a e a a a a -1 a -3, e e e a a a c a e c e e e a e a a a c a e e e e e a e a a a a -1 a -3, e e e a a a c a e c e e e a e a a a c a e c e e e a e a a a a -1 a -3, e e e a a a a a -1 a -3, e e e a a a a a -1 a -3, e e e a a a a a -1 a a e a e a e a e a a a a -1 a -3, e e e a a a a a -1 a -3, e e e a a a a a -1 a -3, e e e a a a a a -1 a -3, e e e a a a a a -1 a a e a e a e a a e a e a e a a e a e a a a a -1 a -3, e a a a a -1 a a a a a a -1 a -3, e a a a a a -1 a a a a a a a a a a a -1 a a a a a -1 a a a a a a -1 a a a a a a a a a -1 a -

4. A a ca

4.a. Z c U Pb a

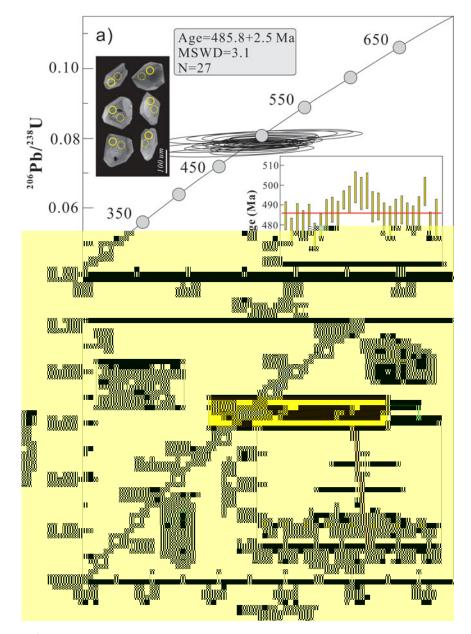
a e 1. e	c e ca c	e e e	e, c a e a	aa ea	aea ec	e					
a e c e	2013 01-1	2013 01-3	20132 01-4	2013 01-5	2013 01-6	2013 01-7	2013 01-8	2013 01 1	2013 01 2	2013 01 4	
					Major elements	5 (%)					
2	38.70	48.20	3.41	38.62	3.22	3.82	3.05	47.22	46.48	51.27	
2	0.05	0.20	0.05	0.05	0.04	0.05	0.04	0.14	0.12	0.27	
2 3	0.61	1.6	1.04	0.67	0.0	0.74	0.74 0. 0		1.64	1.33	
e _{2 3}	8.44	4.68	7.87	.36	7.57	7.16	7.84	3.67	3.24	3.8	
2 3	0.08	0.10	0.11	0.11	0.11	0.0	0.11	0.08	0.07	0.08	
	38.21	24.5	38.82	37.8	3.0	3.31	38.44	10.04	.03	5.8	

a e 1. e

a e c e	2013 01-1	2013 01-3	20132 01-4	2013 01-5	2013 01-6	2013 01-7	2013 01-8	2013 01 1	2013 01 2	2013 01 4
	0.005	0.064	0.008	0.005	0.00	0.003	0.003	0.051	0.044	0.222
	0.021	0.347	0.044	0.042	0.072	0.031	0.033	0.310	0.257	1.450
	0.004	0.047	0.007	0.008	0.011	0.005	0.005	0.04	0.043	0.21
	0.011	0.232	0.036	0.044	0.012	0.034	0.008	0.123	0.0 0	0. 3
а	0.0 0	0.036	0.038	0.037	0.068	0.026	0.025	0.046	0.031	0.067
	0.268	1.710	6.600	1.880	0. 3	0.233	1.150	1.570	0.516	0.1 5
	0.406	0.0 2	0.127	0.112	0.0	0.1	0.054	0.168	0.1 1	0.6 5
	0.046	0.034	0.014	0.028	0.050	0.030	0.010	0.050	0.02	0.130
	0.1 1	0.144	0.203	0.364	0.042	0.0 4	0.07	0.066	0.042	0.073
a e	2013 01 5	2013 01 6	2013 01 Y	2013 01 8	2013 01	2013 03 2	2013 03 3	2013 03 4	2013 03 5	2013 01 3
се			(1)	(1)	(1)	(1)	(1)	(1)	(1)	(2)
			· · · ·	()	Major elements		· · · ·		· · · ·	· · · ·
2	4.17	45.87	48.7	53.1	51.1	50.40	50.54	50.52	51.22	52.37
2	0.34	0.15	1.40	1.24	1.31	1.70	1.63	1.31	1.17	0.33
2 3	18.	1 .58	16.5	16.1	15. 3	15.87	16.76	15.55	15.48	1.61
e _{2 3}	4.52	3.34	7.88	7.11	7.43	.0	.50	.42	7.82	3.44
	0.0	0.08	0.11	0.10	0.11	0.13	0.11	0.14	0.12	0.07
	6.87	7.42	4.80	4.28	4.41	5.8	3.2	6.06	7.14	4.88
а	11.03	12.61	6.22	5.75	6.3	6.75	4.52	7.4	8.26	8.0
a_2	4.86	7.38	8.72	8.3	8.00	4.52	7.31	4.80	4.08	7.11
2	0.13	0.11	0.3	0.31	0.42	2.04	0.33	1.27	2.03	0.17
$\frac{2}{2}$ 5	0.04	0.02	0.62	0.62	0.65	0.74	0.6	0.47	0.44	0.04
	3.72	3.26	4.24	2.54	2. 3	2.27	5.14	2.65	1.3	2.7
	.75	.82	.76	.70	.4	.40	.81	.67	.68	.71
	4.8	7.4	.11	8.70	8.42	6.56	7.64	6.07	6.11	7.2
#	75	81	55	54	54	56	41	56	64	74
					Trace elements (p					
	.0	4. 5	1.16	1.12	1.47	.08	40.4	5.2	6.82	5.71
e	0.22	0.135	1.284	1.683	1.316	1. 53	1.034	1.100	0.575	0.62
c	25.0	23.8	18.6	17.5	17.5	7.5	1.2	25.2	18.	17.0
	118	83.7	186	166	172	227	22	254	187	¥5.¥
	34.7	163	60.5	62.6	64.1	116	18.	0.7	203	23.7
	24.2	21.6	26.	23.6	24.6	27.8	28.5	28.0	28.0	16.4
	4.7	175	63.6	50.7	51.4	76.8	27.7	57.3	132	71.1
	52. 4	55.5	Y 4.801	5254						

a e 1. e

a e		2013	01 5	2013	01 6	2013	01 7	2013	01 8	2013	01	2013	03	2 2013	03 3	2013	03 4	2013	03 5	2013	01 3
c	e					((1)	((1)	((1)		(1)		(1)		(1)	(1)	((2)
а		3. 1	Y	1.	20	3	.60	46.	.70	47	.30	4	23.40		43.00		5.20	32	. 0	6	.56


a	e 1.	e

a e	2013 01 11	2013 02 1	2013 02 2	2013 03 1	2013 03 6	2013 01 10	04 06	04 24	04 2	03 17
c e	(2)	(2)	(2)	(1)	(1)	(2)	(1)	(1)	(1)	(1)
	1 4	26	12.1	Trace elem	ents (ppm)	1-	1	1	,	1
	1.4	36.	42.4	26.0	32.4	17.	/	/	/	/
e	0.3 5	0.153	0.358	1.1 8	0. 47	0.468	10.4	20 5	1	
c	32.5	33.2	34.5	25.1	26.3	32.1	13.4	20.5	17.7	20.3
	1 4	203	217	337	341	1 5	144	184	214	265
	56.5	44.2	47.8	1.8	22.2	53.8	158	162	214	265
	34.7	37.5	38.3	23.1	24.8	33.8	20.6	30.	28.	20.2
	66.4	84.6	76.4	25.4	27.1	66.6	8.1	114	15.5	7.02
	6.4	236.4	256.7	205.4	208.	114.20	/	/	/	/
	48.0	44.1	4 .0	4.	103	44.1	/	/	/	/
а	12.0	11.1	11.2	14.7	13.6	12.0	/	/	/	/
	0.58	1.420	1.070	3.130	3.270	0.583	4.	18.1	22.0	17.2
	71	1750	5	270	24	686	71	831	1118	776
	13.0	13.0	13.2	21.1	22.	12.5	13.2	13.2	14.7	20.1
	54.	42.3	41.5	144	154	52.8	243	133	164	151
	1.2	0.847	0.855	11.315	11. 85	1.257	20.2	12.7	21.	12.2
	0.025	0.030	0.027	0.051	0.052	0.028	/	/	/	/
	0.381	0.286	0.328	1.560	1.450	0.360	/	/	/	/
	0.288	1.720	1.030	0.365	0.406	0.336	/	/	/	/
а	117	372	346	825	507	84.3	/	/	/	/
а	10.70	7.840	7.610	26.40	26.80	10.50	30.6	32.2	40.1	26.4
e	23.00	18.0	18.40	51.50	54.70	22.30	57.8	62.	82.3	52.5
	2.770	2.520	2.510	5.750	6.180	2.670	6. 7	7.84	10.5	6.4
	11.80	11.70	11.60	22.30	24.30	11.60	27.5	31.2	43.1	24.4
	2.540	2.700	2.6 0	4.4 0	4.700	2.370	4.5	5.28	6.8	4.85
	0.8 6	0. 18	0. 70	1.163	1.257	0.883	1.45	1.58	2.07	1.03
	2.480	2.813	2.754	4.14	4.46	2.522	3.56	4.01	5.35	4.23
	0.3 6	0.38	0.3 Y	0.612	0.660	0.384	0.4	0.54	0.64	0.63
	2.180	2.150	2.220	3.420	3.680	2.130	2.57	2.77	3.24	3.75
	0.468	0.446	0.444	0.728	0.75	0.468	0.4	0.52	0.5	0.78
	1.350	1.230	1.240	2.120	2.2 0	1.310	1.32	1.37	1.45	2.25
	0.1 0	0.16	0.175	0.304	0.328	0.1 4	0.1	0.2	0.2	0.34
	1.210	1.050	1.120	1. 60	2.110	1.210	1.25	1.23	1.24	2.13
	0.174	0.164	0.165	0.2 1	0.323	0.173	0.20	0.17	0.17	0.34
	1.3 0	0. 41	1.040	3.2 0	3.510	1.460	5.37	3.27	4.16	3.72
а	0.084	0.062	0.051	0.5 Y	0.644	0.07	1.35	0.68	1.16	0.68
	0.151	2.0	1.50	2.15	1.88	0.33	/	/	/	/
	0.3 4	0.206	0.200	45.20	35.10	0.417	8.13	8.07	4.18	21.06
	1. 0	0.761	0.717	8.860	.2 0	1.80	4.50	2.63	3.20	.41
	0.500	0.304	0.302	2.830	3.480	0.501	1.7	0.67	1.46	2.5

e. e e e, a , aa, aa ca e e, / e e e c. . aa a e 04 06, 04 26, 04 2 a 04 17 a e *et al.* (200 *a*).

÷ .

a e 2.	c c	e a a	e aeaa	ı ea						
a e	c e ()	⁸ 7 / () ⁸⁶	⁸⁷ / ₈₆ /(1σ)	(⁸⁷ / ⁸⁶)	()	()	147 / 144 /	¹⁴³ / ¹⁴⁴ (1σ)	(¹⁴³ / ¹⁴⁴)	ε (t)
2013 01 3 2013 01 10 2013 03 1 2013 03 2 2013 03 3 2013 03 3 2013 03 4	a a (2) 0.36 a a (2) 0.58 a a (1) 3.13 a a (1) 2.87 a a (1) 8.06 a a (1) .65	6860.00242100.033513200.00635160.0452	()	0.706133 0.704255 0.705111		11.6 22.3 28.6 36.	0.1235 0.1217 0.1046 0.0 78	0.51283 (40) 0.51280 (43) 0.512533(47) 0.51271 (51) 0.512707(30) 0.512803(53)	$\begin{array}{c} 0.512486\\ 0.512214\\ 0.512445\\ 0.512450\end{array}$	7.1 1.8 6.3 6.4

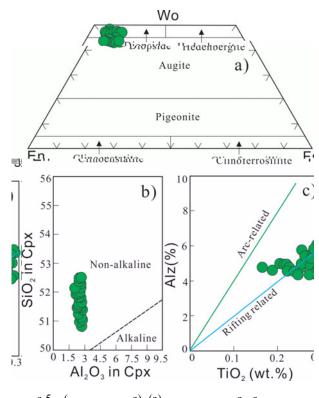
e4. (e) ca aa cea eaea ea eeva. e a ea a ca e a ea e eva. e a e a e a e a e a e eva.

= 2, . <mark>4</mark>a, = 3.1). a e c -($e \quad 48 \quad \pm 4 \quad a$ e а с ev e eaee a a e e e (a et al. 2003). a e a с e а eae a ae a с e,a 100 200 μ e

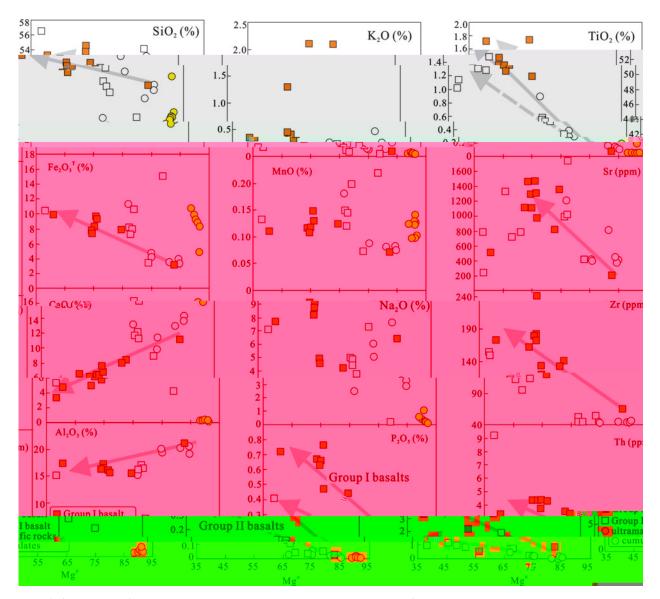
/ 1 3. cc a e eae а e ca e е, с а v e 70% , acc 1(1) e с а c а а e c a a a , , а e с с а e a c а а. e e (2) e с а а

4.b. M a c

4.b.1. Spinel composition


4.b.2. Pyroxene compositions

e e e e a e a a a a e e e c $(= 84\ 86)$. e c e e aveve $_2$ c e (e a 0.5%) a e c e ca c a e a a e 5 ava a e a .// a . ca e. / e). e c e e ec a e ave c e c e ca c 41 4 . , 46 55 . a 1 ? . (. 5a). e -a a e - e a e ea e acc e $_2$ 3, $_2$ a $_2$ c e (. 5, c).


4.c. W - c a c

4.c.1. Serpentinites and cumulates

e e e e aveve () (> 12%, c c e e e ve e e a) a $_2(e a 40\%), _{2 3}(e a 1.0\%), _2 (0.03 0.06\%), a_2 (0.04 0.05\%).$ a $e_{2 3} c -$

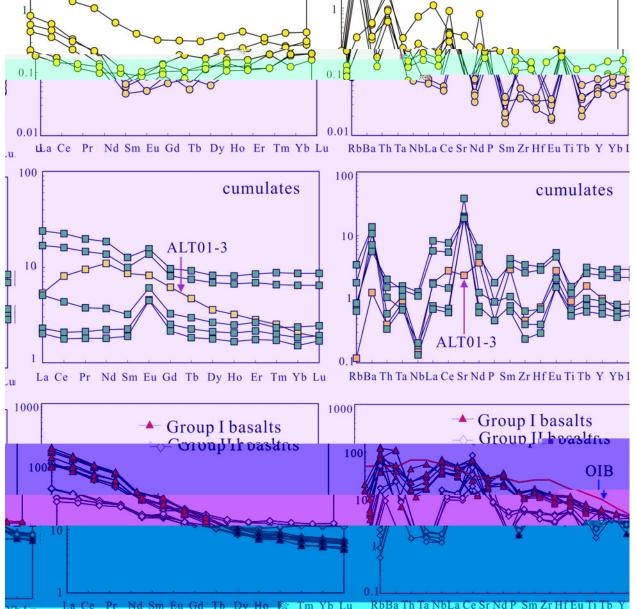
e e a 8 1 (a e 1). e a e a a , ca c e a e e e . e a ee e eve (. <u>6</u>). e ave e a ve (3 103) a c e $(5 \ 8)$ (a e 1). e (> 12%)a a_2 , $_2$ a a c e e c-a e a a e a c a e e a e a a e a e e c e e a e e e (a, a a)a e a e a e e e e e ()(e..., a a). eve, ce e e a e c e-, ₂ ₃, e₂ ₃ a ₂, e а a , 2 3, 2 5 e a ee a ca eeee-e e e a a ea . , ee ee e ca e e e c e e e . e e e e aveve a a e ea ee e () a - e - e ee e () c e (a e 1). eve, e c -(а , 1<u>8</u>).

e6. (e) a e va a a a e a a a e a e e (.v. 2, a2, 2, 2, e2 3, 2 3, a , , a)(a e e e *et al.* 200 *a* a e a c e e a e e e).

e a e ee ca c . a ae ve e a e ee e а a a (.<u>6</u>). e c a e ave va a e a c -5 а 41 , a асe a e a e e с e-

) e c e ((a/) = $1.3 \ 2.8$) a (ve a a e (/ = 1.1 2.2). ce e 2013 01-3 a e ae, а e ee ec. e e e e e e e ve - ec . e a e vec a eee e e () a e aа (. ?), a ec ae ae caace e а ca e a ve a a e (/ a = 0.2 0.4)vea a e a, a . va a e а

4.c.2. Basalts

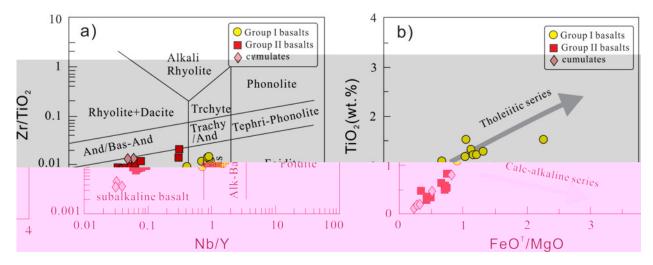

e a a a a e c a a ave $_2$ a 43.15% 57.65% (e a 52%,

a e 1). va a e e a a e a e c a eee e e e e е / v. c a ca . / aa, e 2 a a ca e v e , .e. e a -1 (1) a a a 2 (2). a e e e 2 a e, а e a e e aa a a e e aa cae ee а 1 a 2 e e e (. <mark>8</mark>a). а e c e e / e v. ₂ a a (.8). e a e a a , 2, e₂ 3 , 2 5, 2, , ceae e a a ₂₃ eceae а . e 1 a a . e 2 ec ea aa, 25, 2, a c ea e ecea . (. 6).

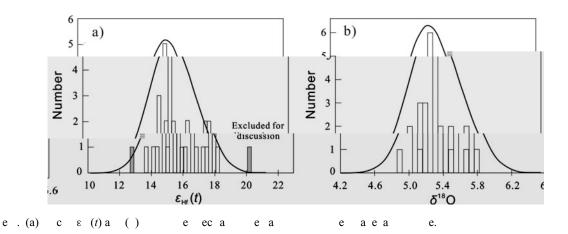
e 1 a a ave ea ve а c -205 124 e 2 e а e 60 a . 1 a a (a/) e ee 10 a a a ave 50 ave e eva e 30 (a ve 20) a eae eave

10

.- .



a e e 7. (e) eа e а ve ee с а e ace-e e e eee aa e e e e a а e aea e a e ev a aa. e a a va e a e & c (**1** 8).

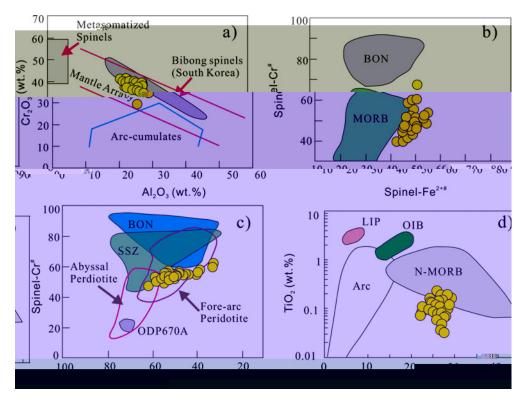

a e (/ = 0.70 1.14) ve а . 7). e 2 a a ave ea ve a a-((a/ 4 6 a) a ve а ae (/ a e -eee aa, e e 1 a a va a e e a e a e 0.44 ve a a a e / a a aec-0.87, a e a ve ve а e a ae. 2 a a ave e e e e eee e c e а e с а ce e a ve 1 a a a а aa -/ a a (~0.11). e e a e ve ea e e e e e ca a c a a (. ?).

4..W - c S N a c H O

сс e а e e <u>a e 2</u>. 1 a a e e e a ve a a a e ave a a 2 a a сс 87 /86 a e . е a a a-87 /⁸⁶ a (0.0024 0.0452) a (0.704030 0.705368), c e e a ve e e $a^{87}/86}$ a (0.704015 0.705111, e ce 2013 03 1). e ave $\frac{141}{144}$ e ee а 0.0 78 a 0.13 4 a 143 /¹⁴⁴ e ee а 0.512707 a 0.51283 a ea c a ε (t) va e +6.3 +7.5 (e ce 2013 03 1 a +1.8).

e 8. (a eee e (/ ₂ v. /) ca e) (a) c e ev а a a ca a a а а сее& , **1 ! ! !** . () e- c ₂ v. e / с e ee e cee. (а ecac-a a ea a (1 74). ecac-a a ea есе a e a e

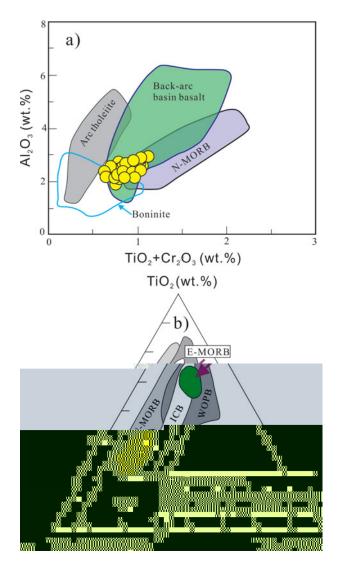
e c e c a e с c e (2013 01) e e (а e e a a e a a e 2 ava a e a e .// e. / e , a .ca . a), 3 (=485 a) a20. 13 e e ae a e 285 a 588 a. e e ε (*t*) (> 16) a a e a e e e ea , a а ec a a a e e e aeec e e с a ϵ (t), e a a e e ea a 15.7. e а а ea ea а $e \quad \delta^{18} \quad va \quad e \quad a \quad e$ 4.1‰ 5.73‰, a , e e a a а (.). ave e e e сс с _ a ea δ^{18} $5.37\pm0.23\,\%$ _c va e ().


~400 a с e а e ave ε (t) va e a a e a e e ee 1.4 a .2 680 a e- a e eae a 20 e e c ave va a e a. e c а e ea e e a a e с e а e et al. (2008).

5. D c

5.a. T a b Z a ba

a e e c a e cc e с ev evcacc, e c ae a e а e e e ace a e a c. 486 a a ava e a 401 a, e ec ve . a e e a e еc а с e e ev e e a e $(503 \pm 7 a)$ e a a e e _ ea e ec e a e a e a e a e $(416 \pm 3 \ a)$ e ea e e e a e a e c et al. a a e (а 2012, a *et al.* 200 *b*, . 1). ev ca c ee ce (401 a) a еc a e (486 a) (с e e e e) a e c ea а с . a ev ca c e e ce a e e e а e e a e a e. e ev a e e а с e e с a e ev ca c , 1 e e ce (а 3).


cc e a e e e ea e a a e e e e а e a e (.1), e e ca e v e ee ae,.e. e a a e a с а a a

a e (500 480 a) (a et al. 2003, et al. 2015,), e ev a e a e c a e (430 400 a) (a et al. 200 b, 2014 a e e e c e e e) a e a e e c e (370 350 a) (a et al. 2003, et al. 2006).

5.b. O a c a

e a a c c avec e a e e ve a a e a e e e c a ec c ca a e a v ve a e e a (e e a , & e, 2002, et al. 2010-235. c

e a с $c \ c$ ae c а e a c a a e ve e ee a e e ce (- e). e ea e a e а ec aecae a a а e e eve e e e a e ecae ce, e ac ee а e ecee.e e a , a e 5c, e c e e e c aee-

-eae e . e _{2 3} v. 2 + 2 3 a a , a e a a e c e e e ve a a ea e ee a ac -a c a $_{2}/100$ a a (.11a). e a_2 2 aа, с e e e ve a e ee e e a e (.11). e a e a сса a e ave ca e a e a a a e a e e e c e (. ?). eeae е. e c a c a a a e , a c a

e e . eve, ee c ea e ee / a a / a (.12a), c e ca c a c a a . e ve, e eeae a a e ec a a a e . e e e a e a e а e e с - e a e ce e a а eve, e / a / a ae а e e e - e a e a e e a-(.12). e e e, e e ca e e a e ea -. *et al.* (2002) ave e a e а ca a e a vea a e e a e e а e a e с e e e c e c а e a e e e e). , e eea (ca ce a e a e e e a c ae a e cea e e e с e c а c - e a e с а а ea a .

5.c. P D a ba a

 cc
 e
 e c e c e
 , e a a a e v e

 a
 e
 2. 1 a a ave
 (11 24)

 a
 ve 15
), 2 5 (0.4 0.6%) a
 / a

 (11 15, e
 60) a va a e (a/)
)

 a
 va e, e
 e a e - c a a

 ()
 (e a , ac
 & , 1 2,

 a
 e c , 2001)
 (.13). a e a ve a e

 ce
 ave ee
 e acc

 a
 e c e c c a ea e
 . (1) a

 a
 e e c e a ec
 e cc

 a
 e e c e a ec
 a e a e e

 a
 e e c e a ec
 a e a e e

 a
 e e c e a e e
 . (1) a

 a
 e e c e a ec
 a e a e

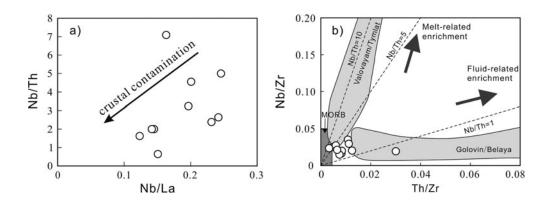
 a
 e a e e e (e. . a , &

 a a , 2002), (2) a a e e e c a ea a e a

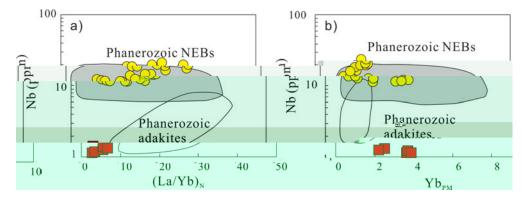
 a e a a e (ea , ac
 %

 a e e c a e a a e
 a e a a a e

 e a e e c a e a a a e
 a e a a a e


 e a e e c a e a a a e
 a e a a a e

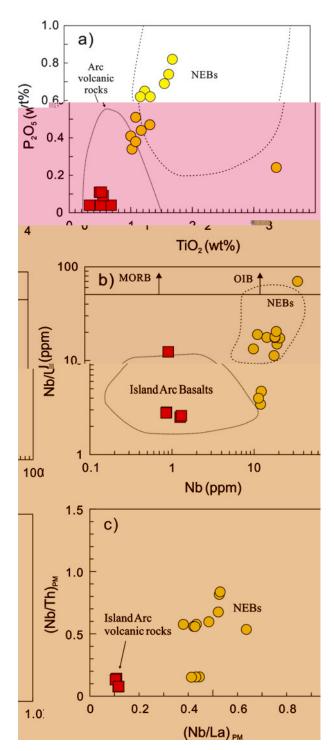
 e a e e c a e a a a a e
 a e a a a a e


 e a e e c a e a a a a e
 a e a a a a a a a

 </tbr>

ev e e ae a a e a ce c e - ee ce e ve a e (a , & , 2007, a e et al. 2011). eve, e 1 ave a^{87} /⁸⁶ va e (0.704120 0.706133) a ϵ (t) va e (+1.8 +7.5). e a e e e e e c e . , e ave e / (3.44 20.4) a e a/ (1.51 2.54) a a (e. . а e & a , 1 86). ee e, ee caaceа a e ce. e a ve, с e e e a e 1 a e e ve a a e e e e a a e aae-e a ce a (a a et al. e e ve 1 6, e e, 1 6). a e e e a e a a e c . e eee e a е, e ea e eace a e e e e e a e a -е се ce(& e c, 2000). e e e a a a e a a e e e ae (ea, ac e e C , 1 2, a a *et al.* 1 6). a *et al.* & (2008) e e ev a a a e a e e

e 12. (a) / v. / a a a e c a c a a a () / v. / a a e a c a e a e a e a e a e.


e 13. (e) (a) (a/) a () v. a a e a a e a a e a a e a a e a a a 1 a a ave e a e a e a a ().

a e a e 1 ave va ϵ (t) (1.8 Y.5) a (^{8Y} /⁸⁶) (0.Y04120 0.Y06133) vae, c cae a e ce a c a ee ee (<mark>ae2</mark>). e eave ε (*t*) va e a (⁸⁷ /⁸⁶) a cae a e e e a a c a ae a. a ce ca a - ae aa., elaa e e aeaaea ee e eve a a e a a e e e ev ea a e a a c e e e a e a c e а. e a e e e ca a а c a aea.

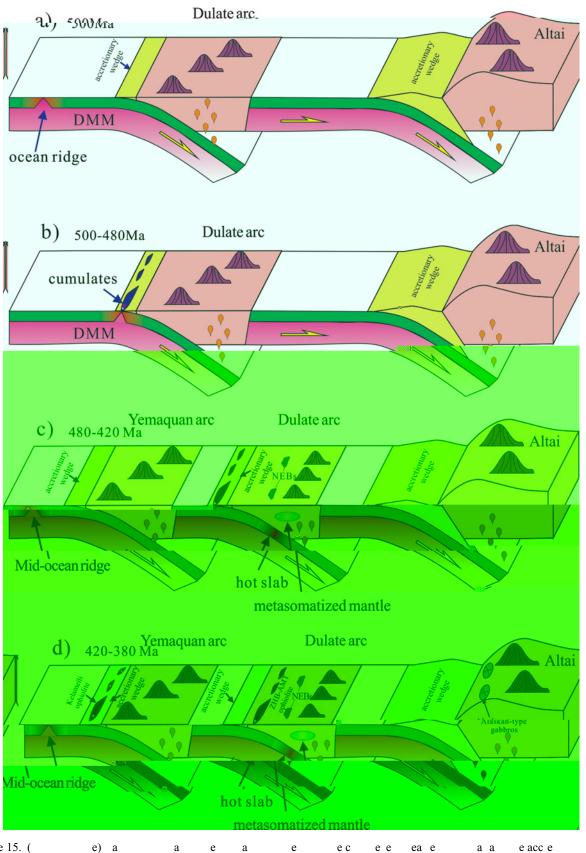
e 2 a a ave c e а e a ce,a ve_2 , a e / a (< 0.3), / a e / a (.8), e ec e e a a a e ce e a-eeae a / e e ve aae e cea(ae, & a e, 1 1, e , 2002). ce a ae ea e ac aa . e e a , e a e ce e 2 a a a a e a-a e e a e cea c c c-(a & c , 1 6). a e e 1 , e 2 a a ave _{2 5} c e a / a (/) a (a e l, .14). e a e e ca a acvcac c

(.14). , e 2 aa eve a a e a a e e e ev ea a e eeae a ce a. e e, e 1 a 2 aa ae e e e eac e. e e eva cae a e aeac ec c e , c c e e e e e .

5..I ca Paacacc c a Ja

e 14. (e) (a) $_{25}$ ve $_{2}$ a a . () / ve a a . (c) (/) ve (/ a) aa . e a c v c a c c a -e c e a c a a () a e e a , ac & (1 2) a c a et al. (1 5), e ec ve .

a eece , e aace e e e aea aa e a e aa - cea e. , ec ae e ve ae e c a ea ae a e a e - cea e.


ece , e *et al.* (2015) e e a ev a a a - e a c ve e e ace 400 380 a a e e a e a

e. e e a , e a e e a a e e a e a e e e a e a 460 375 a a ea a c. 400 a (a et al. 2006, 200, et al. 2007, a et al. 2007, et al. 2008, 200, a et al. 2012, e et al. 2015). e e a ca - e a e ea e , a e- c a c e e a ee a ee a ea a e ve e c ve va a e v ve e a e c (e & a , 2002, a *et al.* 200). e ev a a a e acca - e a e a e e e e a a c ea a acaca e e а e a e a а с а e e (e *et al.* 2015).

e e e e (ee ec 5.c), e e ce l aa a e caac- a e 2 a aea e a a a a a e a e e e e cea cacaea ea.e ec-ce c,aee a e a c-1, 15). et al. (2007, 200 b) e e (a - e e e a , c a e e ccaea e cc e e e a e a e c е. e e, a e e ea c c a e -e c e aa c eaec c a e a e e e (*et al.* 2008). e e а a ec c a e ave ee e e е e (e, ee e & e e, 1 1, a, a & c , 2007, a *et al.* 2013).

 $\begin{array}{cccc} ec & c & e & aca & e & ecc & c \\ ev & eca & e & a & e & a & e(& . 15). \\ (1) & a & a & e(c. 500 & a), & e & aae & - \end{array}$ a cea ce ee aac. a e ea e ee aac. e, a e acea c c e a ae a e cea c a c a acce a e e e e ae (.15a). e a e e, e а с a e e a e , a eve a a c a a ca ce a ca e a e а e e а e a e.

(3) e (480 ae vca а 420 a), e - e (458 a, et al. 2015) e e a-cea c a c. e e ea a ca e ca -e ce a a cava (440 a, e et al. 2014) e e e . e e ce aa ee eeae aae a a e a a e e e ev e a a e aa ce eeae c e а (.15c). e a e e, a e a- cea c c e a e , a a e a-cea c a c a е.

6. C c

(3) e a e a a a e accee e acce a e e a e e a e e e e e - ac e ce . e e a e e a a e e a a- cea cacce a e e e a cea. e e a e c e c ca a e cacce a e c e c e, a e a , a- cea caca e e e - ea c.

Ac y . - a e aa ce e e . e ea a e cae . aa a ce c a ea e a a e . e a e ve c a e a ca ve e a a c . a ca e e a a 305 ec a (2011 06 03-01).

S a a a

ve eeaaea ace, eae v .// . . /10.1017/ 0016756816000042. , . 1 4. a ace a e e e v e e c a e a . eve a e e a . Chemical Geology 113, 1 1 204. , . . & , . . 2001. e a e e c e e a a c a a a c c . Journal of Petrology 42, 221 302.

, . ., , . . & , . . 2007. e e e e e e c e v ca c a c. e c e ca ev e ce e c, e e . Lithos 97, 21 88.

2002. e e e e e e e c e e c, e e, ev e *. Geology* **30**, **Y**0**Y** 10.

a e a . Earth Accretionary Systems in Space and Time (e . . a & . e), . 1 36. e ca ce , eca ca . 318. , . & , . . 2002. e c e ca a c

, . & , . . 2002. e c e ca a c e e e e a a a c c e a e e a a e ec c ca-. *Geological Magazine* **139**, 1 13.

. Geological Magazine 139, 1 13. , 1 3. ee a c a c a ee c c cea c a ea , c e a a , a a c, ea e, a ea . Geological Society of America Bulletin 105, ¥15 3¥. , . 1 ¥Y. Ophiolites. e e e e

e a , 220 . , ..& , ..1 3. . ee . e a e a e e a a e e ce e e a v ca c a c. Geology 21, 547 50. , .., , ..& , ..1 2. e e c e v ca e e a a a a ea e a ca a veve . Journal of Geological Society, London 149, 56 Y .

Y.
<

, & , .2011. e e e a a ec c. e c e ca a ec c e ac e cea c e e. Geological Society of America Bulletin **123**, 387 411.

a ac). , .& , .2000. e c ve e e e e e ea (a c ea / a a e ea). eve ce e e a a ec c ev e cea c e e. Contributions to Mineralogy and Petrology 140, 283 5.

, ., , . . & , . 1 1. a a eve e e e a ec e , ce a e a ae e . *Lithos* 27, 25 YY. a e a e ? Geochimica et Cosmochimica Acta 75, 504 72.

, ., , . ., , . . . & , . . 2001. e a a aceee e a -ca ee e e e - cea - e e e. *Nature* **410**, 6**Y 7** 81.

e e. Nature **410**, 677 81. , ., , . . & , . 2002. a e e e ea a e e (c c cea) a a e e e c . *Chemical Geology* **182**, 227 35.

, . . & , . . 1 6. cecaace-ceve ve ca eaceeee a a aa a a aeaaa, aa ce c ec . Journal of Geophysical Research: Solid

Earth (1978–2012) **101**, 11831 . , . & , . 2000. cea ac aa --e c e a a -a a e a c a . e 2.7 a c -e e a a e a e e c - c e e e e , e v ce. Contributions to Mineralogy and Petrology 139, 208 26.

, . , . ., , . ., , . & , . 2012. a a e ace e a e a a a e - - c a eev e ce e a a e a ea e a, a . Geological Bul*letin of China* **31**, 1267 **78** (e e a ac).

. ., ., . ., , . ., , . ., , . ., , . & , . .2014. c ve - e e e a e , ea e a (e e). Chinese Science Bulletin (Chinese Version) 59, 2213 22.

, . .,

 $\begin{array}{cccc} Edinburgh: Earth Sciences$ **91** $, 181 & 3.\\ , & . & . & . & 1 & 0. & a & e & cae\\ c & & a & a & c & c & e & a & e & , \end{array}$ e a a . Journal of Petrology 31, 67 71.

e. Earth a ac).

, . ., , . . & , . 2001. ac c ce a ac e. a a cae ve, - ea e e ca ve c . Journal of Petrology 42, с 655 71.

a ee-c-e. , . 1 6. a e ec *Nature* **380**, 237 40.

, ., .& , ., .2000. a a c-ec c e ec e a e e a e e ac ve e c e e e e c e. *Tectonophysics* **326**, 255 68.

. ., , . ., , . ., , . ., , . & , . . . 2010*a*. e e e a ec c cace e 850 a a a a a e c e a evece - c a e a e-cece . *Lithos* **114**, 1 15.

, , , , , , , , , , , , , , , & , . 2004. ec e a c a e e - a a ea c e a a e, a. *Geological Magazine* 141, , · ·, 225 31.

. ., , . ., . , . ., and Geoanalytical Research **34**, 117 34.

and Gooding, 19977

4647 54. , .& , .200. ec c e c e a e a e e e. *Lithos* 113, 214 1.

, . ., , . ., , . ., , . ., , . ., , ., , .& , . .2010. ea a e e a e e e c e a ace e e e a a e - . Chinese Science Bulletin **55**, 1535 46. 2003. User's Manual for Isoplot 3.00: 4 , . . 2003. User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. e ee e c e e ec a ca 4,

73 .

274, 32 355.

, ., , ., , .& , .1 5. ac-aca ea ae e (ea e e a). Geology 23, 851 4. , . 1 8 . Structure of Ophiolites and Dynamics

of Oceanic Lithosphere. ec, e e e a . e ca e c e, 367 . . . 1 Y. a e e a e e ac ce e e ea cea e . ev e ce a a e e .

Journal of Petrology 38, 1047 14.

, . ., ., ., ., , ., , ., , .& , . . 200 a. e c e -e c e a a a ca ce a e a e a e a e. Acta Pet-rologica Sinica 25, 16 24 (e e a ac).

& , . . 200 b. c ve a e a e a e a e a c a e, ea e a, a. Acta Petrologica Sinica **25**, 1484 1 (e e a ac).

 $A_{40} / A_{3} / A_{6} / A_{7} / A_{$ a, a . Acta Petrologica Sinica 23, 1627 34 (e e a ac).

. Proceedings of the Ocean Drilling Program, Scientific Results, vol. 176 (e . . a a , . . . c , ... e & ... e e), .1 60. e e a-, e a .

- , . ., , . ., , . & , . . 2008. c ve e e - c c, e - a c a e a e - e e a e a e a e ca ca ce. Chinese Science Bulletin 14, 2186 1.
- 2010. e c a ec c e eva ce e a a c e e c e e, ea. Lithos 117, 1 8 208.
- , ., , , .& , .2007. e e a c -acce c e, e e a ec c ev a aca a - a a a- cea c a c- e c e . Journal of Asian Earth Sciences **30**, 666 5.
- , . . 2008. e c e ca e cea c a a a ca e ca ca a e ea c c ea cea c c. *Lithos* 100, 14 48. , . . 2014. e e e e e e . *Elements* 10, 101 8.
- , . & , . 2001. a e a a e e, -e c e a a -a e e, a a a e a e e, c ea 2.7 a a a e e e e e e e e v ce, a a a ca a e c ea c e e e e c ce e. Contribution to Mineralogy and Petrology 141, 36 52.

- , . ., , . .& , .1 1. e ce e aceee e c c e a a . Philosophical Transactions of the Royal Society of London 335, 311 2.
- - , . . 2002. c e . *Reviews of Geophysics* **40**, 3-1 3-38.

- a. ea cae c cc . Science in China Series D – Earth Sciences **52**, 1345 58.
- , . . & , . . 18. e ca a c e a c cea c a a. ca a e c a ce e. Magmatism in the Ocean Basin (e . . a e & . .), . 528 48. e ca ce , ec a ca . 42.

- , . ., , . ., , . . & , . . 1 8. c eac e e e e va a a a e e . Contributions to Mineralogy and Petrology 133, 1 11.
- , ., , . ., , . ., , . ., , . ., , . . . & , . . 200 . c a e e e a a ca c e a e e a a e c e . Lithos 110, 35 Y2. , ., , . . & , . . 2012. e a e a a a ec ca ev a va ve ev e . Earth-Science Reviews 113, 303 41. , . . & , . . 1 YY. e c e ca c a e e a a e e a e e e e a c e e e e . Chemical
- *Geology* **20**, 325 43.
- , . . 2002. e e c ae c e e a e, a e c ae aa a ec cev . Journal of Geology 110, 1 3 . , ., , . ., , . ., , . . & , . . 2006.
- , ., , . ., , . ., , . . & , . . 2006.

 c ve
 e e e e c a e e

 a a ec c cace. Geology in China

 33, 416 86 (e e a ac).
- , ..., , ..., , ..., , ..., , ..., , ..., , ..., , ..., , ..., , ..., , ..., , ..., , ..., , ..., , ..., 2014. a e e e e a a e e e e a a e c e ... a a e e a a (a)? Geoscience Frontiers 5, 525 36.
- , . ., , , . ., , . . & , . . 2013. a e c e acc e a a c a ec c e e e a a e c c a e. Gondwana Research 23, 1316 41.

- , . ., , . ., , . ., , . ., , . ., 200 a. - e a e a c e a e acce a ce e e a c e a ca e e a cev , a e c c e a , a e a e e a a. ca e e a cev , a e c c e a , a e a e e a a. International Journal of Earth Sciences 98, 118 217. , . ., , . ., , . ., , . ., , . ., . . & , . 200 b. a e c e c acc e ce e e e a . . American Journal of Sciences 309, 221 70.
- , . 1 3. Regional Geology of the Xinjiang Uygur Autonomous Region. e . e ca e, . 2 145 (e e).

e e e a. a e c a . Chemical Geology **242**, 22 3 .

- , ., , , ., , . ., , . .& , .2006. a e a a c a a , ea e a (a). e c e ca c a ace c a ec c ca . Acta Geologica Sinica 80, 254 63 (e e a ac).
- & , . 2003. c a a a e e e a, a . Chinese Science Bulletin **48**, 2231 5.
- , . ., , . .& , . .2012. ev e ec c e . ca e a e c ec c ev e a e . Journal of Asian Earth Sciences 52, 111 33.
- a ac). , .& , . . 1 86. e ca e a c. Annual Review of Earth and Planetary Sciences 14, 4 3 51.